The Thread::Queue
class implements multi-producer, multi-consumer queues. It is especially useful in threaded programming when information must be exchanged safely between multiple threads. The Thread::Queue
class implements all the required locking semantics.
The class implements FIFO (first in, first out) type of queue. In a FIFO queue, the first tasks added are the first retrieved.
Example:
queue = Thread::Queue.new
producer = Thread.new do
5.times do |i|
sleep rand(i) # simulate expense
queue << i
puts "#{i} produced"
end
end
consumer = Thread.new do
5.times do |i|
value = queue.pop
sleep rand(i/2) # simulate expense
puts "consumed #{value}"
end
end
consumer.join
- #
- C
- D
- E
- F
- L
- N
- P
- S
Class Public methods
Thread::Queue.new → empty_queue
Thread::Queue.new(enumerable) → queue
Link
Creates a new queue instance, optionally using the contents of an enumerable
for its initial state.
Example:
q = Thread::Queue.new
#=> #<Thread::Queue:0x00007ff7501110d0>
q.empty?
#=> true
q = Thread::Queue.new([1, 2, 3])
#=> #<Thread::Queue:0x00007ff7500ec500>
q.empty?
#=> false
q.pop
#=> 1
Source: show
static VALUE rb_queue_initialize(int argc, VALUE *argv, VALUE self) { VALUE initial; struct rb_queue *q = queue_ptr(self); if ((argc = rb_scan_args(argc, argv, "01", &initial)) == 1) { initial = rb_to_array(initial); } RB_OBJ_WRITE(self, queue_list(q), ary_buf_new()); ccan_list_head_init(queue_waitq(q)); if (argc == 1) { rb_ary_concat(q->que, initial); } return self; }
Instance Public methods
clear() Link
Removes all objects from the queue.
Source: show
static VALUE rb_queue_clear(VALUE self) { struct rb_queue *q = queue_ptr(self); rb_ary_clear(check_array(self, q->que)); return self; }
close Link
Closes the queue. A closed queue cannot be re-opened.
After the call to close completes, the following are true:
-
closed?
will return true -
close
will be ignored. -
calling enq/push/<< will raise a
ClosedQueueError
. -
when
empty?
is false, calling deq/pop/shift will return an object from the queue as usual. -
when
empty?
is true, deq(false) will not suspend the thread and will return nil. deq(true) will raise aThreadError
.
ClosedQueueError
is inherited from StopIteration
, so that you can break loop block.
Example:
q = Thread::Queue.new
Thread.new{
while e = q.deq # wait for nil to break loop
# ...
end
}
q.close
Source: show
static VALUE rb_queue_close(VALUE self) { struct rb_queue *q = queue_ptr(self); if (!queue_closed_p(self)) { FL_SET(self, QUEUE_CLOSED); wakeup_all(queue_waitq(q)); } return self; }
closed? Link
Returns true
if the queue is closed.
Source: show
static VALUE rb_queue_closed_p(VALUE self) { return RBOOL(queue_closed_p(self)); }
empty? Link
Returns true
if the queue is empty.
Source: show
static VALUE rb_queue_empty_p(VALUE self) { return RBOOL(queue_length(self, queue_ptr(self)) == 0); }
freeze Link
The queue can’t be frozen, so this method raises an exception:
Thread::Queue.new.freeze # Raises TypeError (cannot freeze #<Thread::Queue:0x...>)
Source: show
static VALUE rb_queue_freeze(VALUE self) { rb_raise(rb_eTypeError, "cannot freeze " "%+"PRIsVALUE, self); UNREACHABLE_RETURN(self); }
length Link
Returns the length of the queue.
Source: show
static VALUE rb_queue_length(VALUE self) { return LONG2NUM(queue_length(self, queue_ptr(self))); }
num_waiting() Link
Returns the number of threads waiting on the queue.
Source: show
static VALUE rb_queue_num_waiting(VALUE self) { struct rb_queue *q = queue_ptr(self); return INT2NUM(q->num_waiting); }
pop(non_block=false, timeout: nil) Link
Retrieves data from the queue.
If the queue is empty, the calling thread is suspended until data is pushed onto the queue. If non_block
is true, the thread isn’t suspended, and ThreadError
is raised.
If timeout
seconds have passed and no data is available nil
is returned. If timeout
is 0
it returns immediately.